

Standard program for µPC3 chilled water unit

Computer Room Air Conditioning – Chilled Water Unit

Integrated Control Solutions & Energy Savings

DISCLAIMER

CITEC bases the development of its products on decades of experience in HVAC, on the continuous investments in technological innovations to products, procedures and strict quality processes with in-circuit and functional testing on 100% of its products, and on the most innovative production technology available on the market. CITEC and its subsidiaries nonetheless cannot guarantee that all the aspects of the product and the software included with the product respond to the requirements of the final application, despite the product being developed according to state-of-the-art techniques.

The customer (manufacturer, developer or installer of the final equipment) accepts all liability and risk relating to the configuration of the product in order to reach the expected results in relation to the specific final installation and/or equipment.

CITEC may, based on specific agreements, acts as a consultant for the positive commissioning of the final unit/application, however in no case does it accept liability for the correct operation of the final equipment/system.

CITEC product is a state-of-the-art product, whose operation is specified in the technical documentation supplied with the product or can be downloaded, even prior to purchase, from the website www.citecinternational.com.

Each CITEC product, in relation to its advanced level of technology, requires setup/configuration/programming/ commissioning to be able to operate in the best possible way for the specific application. The failure to complete such operations, which are required/indicated in the user manual, may cause the final product to malfunction; CITEC accepts no liability in such cases.

Only qualified personnel may install or carry out technical service on the product.

The customer must only use the product in the manner described in the documentation relating to the product.

In addition to observing any further warnings described in this manual, the following warnings must be heeded for all CITEC products:

- Prevent the electronic circuits from getting wet. Rain, humidity and all types of liquids or condensate contain corrosive minerals that may damage the electronic circuits. In any case, the product should be used or stored in environments that comply with the temperature and humidity limits specified in the manual.
- Do not install the device in particularly hot environments. Too high temperatures may reduce the life of electronic devices, damage them and deform or melt the plastic parts. In any case, the product should be used or stored in environments that comply with the temperature and humidity limits specified in the manual.
- Do not attempt to open the device in any way other than described in the manual.
- Do not drop, hit or shake the device, as the internal circuits and mechanisms may be irreparably damaged.
- Do not use corrosive chemicals, solvents or aggressive detergents to clean the device.
- Do not use the product for applications other than those specified in the technical manual.

All of the above suggestions likewise apply to the controllers, serial boards, programming keys or any other accessory in the CITEC product portfolio.

CITEC adopts a policy of continual development. Consequently, CITEC reserves the right to make changes and improvements to any product described in this document without prior warning.

The technical specifications shown in the manual may be changed without prior warning.

The liability of CITEC in relation to its products is specified in the CITEC general contract conditions, available on the website www.citecinternational.com and/or by specific agreements with customers; specifically, to the extent where allowed by applicable legislation, in no case will CITEC, its employees or subsidiaries be liable for any lost earnings or sales, losses of data and information, costs of replacement goods or services, damage to things or people, downtime or any direct, indirect, incidental, actual, punitive, exemplary, special or consequential damage of any kind whatsoever, whether contractual, extra-contractual or due to negligence, or any other liabilities deriving from the installation, use or impossibility to use the product, even if CITEC or its subsidiaries are warned of the possibility of such damage.

DISPOSAL

INFORMATION FOR USERS ON THE CORRECT HANDLING OF WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT (WEEE)

In reference to European Union directive 2002/96/EC issued on 27 January 2003 and related national legislation, please note that:

- 1. WEEE cannot be disposed of as municipal waste and such waste must be collected and disposed of separately.
- The public or private waste collection systems defined by local legislation must be used. In addition, the equipment can be returned to the distributor at the end of its working life when buying new equipment.
- 3. The equipment may contain hazardous substances: the improper use or incorrect disposal of such may have negative effects on human health and on the environment.
- 4. The symbol (crossed-out wheeled bin) shown on the product or on the packaging and on the instruction sheet indicates that the equipment has been introduced onto the market after 13 August 2005 and that it must be disposed of separately.
- 5. In the event of illegal disposal of electrical and electronic waste, the penalties are specified by local waste disposal legislation.

Icon types and explanation

Content

<u>1.</u>	INTRODUCTION	4
1.1 1.2	Functional Overview Network Architecture	4 5
<u>2.</u>	I/O CONFIGURATION	6
2.1	μ PC3 – I/O Configuration (Return air humidity probe 0-5V)	6
R		7
<u>J.</u>		/
3.1	MAIN SCREEN	7
3.2	UNIT ON/OFF	7
3.3	I/O INFORMATION	8
3.4	Setpoints	8
3.5	DEVICES INFORMATION	9
3.6	TREND GRAPHS	10
3.7	Active & history alarms	10
3.8	NETWORK ROTATION	11
3.9	PGD1 SWITCHING	11
<u>4.</u>	PGD1 USER INTERFACE	12
41	TERMINAL GRAPHIC	12
4.2	DISPLAY SCREEN	12
5	PGD1 MENU DESCRIPTION	13
<u>.</u>		
<u>6.</u>	FUNCTIONS	14
6.1	UNIT ON/OFF	14
6.2	TEMPERATURE AND HUMIDITY SETPOINTS	14
6.3	TEMPERATURE REGULATION	15
6.4	LOW SUPPLY AIR OR RETURN AIR TEMPERATURE PREVENTION	15
6.5	HUMIDIFICATION REGULATION	16
6.6	DEHUMIDIFICATION REGULATION	16
6.7	REHEATING REGULATION	17
6.8	SUPPLY FAN REGULATION	17
6.9	NETWORK ROTATION	18
6.10	0 PROBE CONFIGURATION	19
6.1	1 RESTORE DEFAULT PARAMETER VALUES	19
<u>7.</u>	ALARM	20
71	VIEW AND DESET ACTIVE ALADM	20
7.1		20
1.2	ALARM LOG	20
<u>8.</u>	MASTER SUPERVISORY	21
8.1	MODBUS PROTOCOL ADDRESS LIST	22
APF	PENDIX 1: ALARM LIST	24
٨٥٢		26
Art		26

1. INTRODUCTION

1.1 Functional Overview

This program is an application software for constant temperature and humidity chilled water units, which is mainly used in CITEC µPC3 series controllers.

CRAC (Computer Room Air Conditioning - Chilled eWater Unit)

Main functions:

- Room temperature/humidity control; supports supply air, return air or supply air + return air temperature control;
- Up to two electric heaters. For electric heaters with different power rating, binary system allows for 3-stages management.
- Time zone rotation;
- Dehumidification reheat;
- Heating power adjustment;
- Integrated control of CITEC humidifier, CPY and 0~10V direct output;
- Low supply air temperature prevention;
- Chilled water valve control 0~10V;
- Active alarm, alarm log, automatic reset management of common alarms;
- I/O information display and configuration management;
- Cumulative working hours of the units;
- Sequencing of up to 16 units in a network;
- Supervisory: Modbus, BACnet;
- Display supported (pGD1, pGDx);
- Other functions (ON/OFF operation, manual control, power-down memory, multi-level password protection, etc.);

1.2 Network Architecture

Figure 1.2.1 shows the configuration of using μ PC3 with Ethernet port as a controller. Unit rotation, switching of duty units and standby units are communicated through the Ethernet port. Each unit can be connected to CPY through Fieldbus1, while the display port is connected to pGD1 or pGDx. Either BMS2 port or Ethernet port (Modbus TCP) of each unit can be used for BMS master.

Unit type Communication	CPY	Unit rotation	Master Supervisory	pGDx
Master	Fieldbus1	Ethernet	BMS2 or Ethernet	pLAN
Slave	Fieldbus1	Ethernet	BMS2 or Ethernet	pLAN

Figure 1.2.1

Please take note that this controller is connected to high voltage 230V. When servicing, extreme care should be taken to protect against shock.

2. I/O CONFIGURATION

Note: Default configuration is shown as below.

2.1 μPC3 – I/O Configuration (Return air humidity probe 0-5V)

Digital Input			Analog Input		Digital Output	Analog Output		
ID1	Air flow switch	B4	Return temperature (NTC)	DO1	Supply fan	Y1	Supply fan	
ID2	Air pressure filter	В5	Supply temperature (NTC)	DO2	Heater step 1	Y2	Buzzer	
ID3	Heater 1 overload	B 6	Return humidity (0-5V)	DO3	Heater step 2	Y3	Water valve	
ID4	Heater 2 overload	B7	Supply humidity (0-5V)	DO4	Humidify			
ID5	Power failure	B8	Water inlet temperature (Optional NTC)	DO5				
ID6	Smoke/fire alarm or Flood detector	В9	Water outlet temperature (Optional NTC)	DO6	Dehumidification valve (Optional)			
ID7	Drip tray water or Fan overload	B1	Valve position (2-10V)	D07	Global alarm			
B2	Water flooding switch							
В3	Remote on/off							

3. PGDX USER INTERFACE

3.1 Main screen

Note: pGDx mainly displays parameters for general users only. If need to configure factory and service parameters, please switch to pGD1.

3.2 Unit ON/OFF

3.3 I/O information

INFO ------ Analog inputs Image: space state sta

Figure 3.3.1

Figure 3.3.3, Figure 3.3.4

3.4 Setpoints

Figure 3.4.1

I/O INFO ----- Analog outputs

I/O INFO ----- Digital outputs

= 1	n 06/09/2021 20:06 I	/0 INFO				Ģ
¢,	DIGITAL OUTPU	TS				
NO1	Supply fan		NO4 Humi	dify		
< NO2	Heater step 1		NO5			
NO3	Heater step 2		NO6 Dehu	mid valve		
			NO7 Globa	al alarm		
1	⊕ ^r	()	$\stackrel{\longleftarrow}{\longleftrightarrow}$	(i

Figure 3.3.5

SETPOINTS ----- Air temperature

Figure 3.4.2

SETPOINTS ------ Humidity setpoints

Figure 3.4.3

3.5 Devices information

Figure 3.5.1

DEVICES INFO ----- Working hours

Figure 3.5.3

Figure 3.5.5

DEVICES INFO ----- Supply fan

Figure 3.5.2

DEVICES INFO ----- Change language

Figure 3.5.4

3.6 Trend graphs

Figure 3.6.1

3.7 Active & history alarms

ALARMS ----- Active alarms

Figure 3.7.1

ALARMS ----- History alarms

Figure 3.7.2

3.8 Network rotation

Rotation ----- Unit rotation

= n 13/09/2021 22:07 NETWORK	÷1	Q
🚔 Network rotation		
Groc 1 Groc 3		
Stant CV Standby Cline		

Figure 3.8.1

3.9 pGD1 switching

To switch from pGDx to pGD1 display, go to main menu and select "pgD1 Emulator" as shown in Figure 3.9.1 below.

Figure 3.9.1

Note: To operate a combination key, first click 1, then select the desired combination key. Finally, click 2 or long press 2 (delayed entry) to enter the desired interface.

pGD1 display example:

4. PGD1 USER INTERFACE

Es

4.1 Terminal graphic

This program supports both pGD1 and pGDx. The following is an introduction to the pGD1 terminal.

Figure 4.1.1

As shown in figure above, the terminal has 6 keys whose meanings are described below:

🛱 - Alarm	Display list of activated alarms					
Prg _{- Prg}	Access main menu					
ESC - Esc	Return to previous screen					
1 - Up	Navigate between display screens					
🕹 - Down	or increase/decrease value					
🗲 - Enter	Enter selected sub-menu or confirm set value					

4.2 Display screen

Figure below shows an example of main screen:

- 1- Date and time;
- 2- Current temperature and humidity;
- 3- Unit status;

Unit ON
OFF BY ALARM
OFF BY BMS
OFF BY DI
OFF BY KEYBOARD
MANUAL MODE
Rot. Standby
Cooling
Dehumidification

- 4- Unit address (Master Mst or Slave address 1..15);
- 5- Press *Down* key to view the contents of frequently used menus;

Figure 4.2.2

6- Display operating state of the unit:

Cooling	Unit is in cooling state				
Heating	Unit is in heating state				
Humidification	Unit is in humidification state and the humidifier is on				
Dehumidification	Unit is in dehumidification state				

- 7- Current network status of the unit (only visible to master unit);
- 8- Unit working hours;
- 9- Version information;
- 10- View unit I/O information.

9

5. PGD1 MENU DESCRIPTION

Main menu - Function tree

Regardless of the screen displayed, pressing the Prg key accesses to the main menu shown below.

Figure 5.1

- Note: In order to ensure safe operation of the unit, there is a three-level password protection.
- 1. User: Read access to all parameters. Able to switch the unit on/off, modify cooling/heating mode and setpoints.
- 2. Service: Read access to all parameters. Can modify parameters except for initialization related ones.
- 3. Factory: Read/modify access to all parameters.

Default passwords

User:

Service: Factory: 1234 (default value)

5123 (default value)

8328 (default value)

6. FUNCTIONS

6.1 Unit ON/OFF

Unit can be switched ON/OFF through the user interface with operation logic as below:

Figure 6.1.1

Therefore, alarm has the highest priority.

- 1: Unit ON
- 2: OFF by alarm
- 3: OFF by BMS
- 4: OFF by DI

5: OFF by keyboard

Figure 6.1.2

As shown in the main screen in Figure 6.1.2, press *Up* or *Down* key to turn to the switch icon, then press *Enter* key to enter the following screen, and then press *Up* or *Down* key to switch the unit on or off.

Figure 6.1.3

6.2 Temperature and humidity setpoints

The unit uses temperature and humidity setpoints for control. If dehumidification reheat function is enabled, dehumidification reheat setpoints will be added to control electric heating. Setpoints can be configured in the setpoint menu.

Press *Up* or *Down* key to find setpoint icon on the main screen as shown in Figure 6.2.1, then press *Enter* key to access the screen as shown in Figure 6.2.2.

Temperature setpoints shown in Figure 6.2.3:

Figure 6.2.3

Humidification and dehumidification setpoints shown in Figure 6.2.4:

Figure 6.2.4

6.3 Temperature regulation

There are 3 different temperature regulation strategies in this program:

- Return air control;
- Supply air control.
- Supply air + return air control (default option);

Users can select temperature regulation strategy according to their own needs in unit configuration menu as shown in Figure 6.3.1.

A	SUnit Conf. F001 Temp.Regulation:	1
Prg	RETURN + SUPPLY SUPPLY	÷
Esc	Start unit delay: 10s	Ŧ
	Figure 6.3.1	

1. Return air OR supply air control:

0%-100% line in Figure 6.3.2 indicates cooling demand of unit. PID regulation of the cooling equipment as shown in Figure 6.3.2 is based on the comparison between return/supply air temperature and setpoint, as shown in Figure 6.3.3.

Figure 6.3.3

2. Supply air + return air control (default):

PID regulation of the cooling equipment as shown in Figure 6.3.4 is first based on the comparison between return air temperature and setpoint to calculate the corresponding supply air temperature setpoint. Then, comparison is made with actual supply air temperature for PID regulation. Figure 6.3.5 shows adjustable setpoint parameters of supply air.

Supply regulation	↑	A Supply limit regula.	1
"Setpoint max.: 20.0°C	t	Setpoint: 17.0°C DeadBand: 0.0°C	¢
**************************************	¥	"Ťi: 80s	¥

Figure 6.3.5

Figure 6.3.6 shows water valve control parameters. When return air temperature is greater than return air setpoint + opening deviation, water valve PID management is enabled; when return air temperature is less than return air setpoint - closing deviation, water valve PID management is disabled.

Figure 6.3.6

6.4 Low supply air or return air temperature prevention

Under cooling mode, it is sufficient to consider low supply air temperature prevention only. Under dehumidification mode, low return air temperature prevention needs to be considered too in addition to low supply air temperature prevention. The larger value of the two will be used to limit the cooling demand of water valve.

Under dehumidification mode, return air regulation has different setpoints from supply air regulation but with similar control logic. Room temperature will drop when chilled water valve dehumidifies, hence low return air temperature prevention is considered. In this case, temperature is given priority and this function is also called the prevention of low temperature during dehumidification.

Figure 6.4.1

Figure 6.4.2 shows the restriction of supply air. As seen, if supply air temperature is lower than limit setpoint, the cooling equipment will be partially restricted. The lower the temperature, the more the restrictions.

6.5 Humidification regulation

Humidification equipment performs PID regulation based on the comparison between indoor humidity and setpoint.

Types of humidification methods (configurable):

- CAREL integrated humidifier (CPY module);
- 0-10V humidification output;
- Switching on/off auxiliary humidifier (water curtain humidifier).

As shown in Figure 6.5.2, users can choose humidification method according to their needs via the humidification menu:

Figure 6.5.2

Figure 6.5.3

6.6 Dehumidification regulation

Dehumidification equipment performs PID regulation based on the comparison between indoor humidity and setpoint.

Types of dehumidification methods (configurable):

- Switching on/off auxiliary humidifier (use dehumidification valve);
- Reduce wind speed to dehumidify.

As shown in figure below, there are options to enable dehumidification heater or dehumidification valve according to different needs. PID calculation will determine the number of heaters to be switched on or the degree of opening for the water valves.

Figure 6.6.2

During dehumidification process, heaters are allowed to operate and compensate for temperature difference caused by the opening of chilled water valve. When dehumidification valve is selected, there is an ON/OFF output and it will reduce the rotation speed of a 0-10V supply fan.

Figure 6.6.3

Note: There are two scenarios for dehumidification. One is based on the demand for dehumidification; and the other is based on the configurable degree of opening of dehumidification valve. (By default, the chilled water valve is fully open during dehumidification)

6.7 Reheating regulation

Reheating in this program is mainly used for two operations: 1. Unit heating operation; 2. Auxiliary heating to prevent indoor temperature from dropping too low when the unit is in cooling and dehumidification mode. Number of heaters can be 0/1/2/binary based on unit configuration. When the number is set to 0, it means that reheating regulation is disabled; and the three other numbers represent 3 different levels of regulation methods in reheating. Figure 6.7.1 shows examples of ON/OFF management under 3 different levels of reheating regulation methods and analog output control of heaters for a unit under heating operation.

Figure 6.7.2 shows reheating parameters setting:

Under cooling and dehumidification mode, if dehumidification reheat function is enabled, the reheating regulation is similar to the figure above. The difference is shown in Figure 6.7.3 with temperature setpoint replaced by dehumidification reheat temperature setpoint. PID will calculate reheating demand and control heaters output.

Figure 6.7.3

6.8 Supply fan regulation

When unit is turned on, the supply fan will be turned on with a delay of 10s and remains on. When unit is turned off, the supply fan is turned off with a delay of 30s. Both the delay timers are configurable. Besides ON/OFF output, the supply fan can use 0-10V analog output as well. When using 0-10V analog output, either temperature difference control or return air temperature control can be selected (return air temperature control as default). The unit can be configured to automatically shut down if related alarms such as *fan overload* and *air flow failed* are triggered. The following figure shows 0-10V analog output of supply fan and take note that during dehumidification mode, fan speed is reduced to 5.0V (configurable).

Supply fan parameters such as regulation mode, maximum and minimum speed can be configured in the menu as shown in Figure 6.8.2.

6.9 Network rotation

This program supports centralized control of up to 16 units within the local area network, and contains three functions:

• Unit rotation: Each unit can be individually configured to enable rotation.

Figure 6.9.1

 Master control: When master control is enabled, the cooling, heating, humidification and dehumidification operations of slave units will follow master unit (optional).

Figure 6.9.2

 Force unit on by temperature: Supports switching on standby units if temperature and humidity exceed limits (optional).

The following explains:

1. Unit rotation

In this program, unit rotation is communicated through Modbus TCP protocol. Use a RJ45 switch hub to connect all the controllers via Ethernet ports and configure the master & slave units as below:

a. Master unit configuration (including slave IP address):

Qunit Conf. Unit Rotation	FØ3Ø	↑	Ŗ	SUnit Slave	Conf. IP address	0 101	1
	Ø	÷	Prg.	U2: U3:	192.168. 192.168.	0.102 0.103	t
Is main master:	M	+	Esc				¥
	 ;			0.4			

Figure 6.9.4

Set the slave IP addresses as 192.168.0.101, 192.168.0.102, 192.168.0.103 ... (up until 192.168.0.115 for 15 slave units). This needs to be configured in master unit.

b. Slave unit configuration:

2. Number of backup units

The number of backup units among the units participating in unit rotation.

3. Rotation type

There are three types of rotation: automatic rotation, rotation according to working hours, and time zone rotation;

Rotation period: once every x hours;

Figure 6.9.7

Note:

- 1) Minimum of 2 units participating in unit rotation;
- 2) The number of backup units must be greater than 0;
- Units participating in unit rotation shall be switched on using the terminal;

• Automatic rotation

In this mode, for the units participating in the network rotation,

Number of units turned on = Total number of units participating in the rotation – number of backup units;

At intervals of a rotation period, the first unit will enter standby, and the subsequent backup unit will be turned on.

For example: There are 5 units participating in the network rotation, the backup number is 2, and the rotation period is 3 hours. The sequencing is as follows:

The first units to run will be 1, 2, 3; Units 4 and 5 are on standby;

After 3 hours of operation, the rotation is triggered, Units 2, 3, and 4 are running, and Units 5 and 1 are on standby;

After another 3 hours, Units 3, 4, and 5 are running, and Units 1 and 2 are on standby; After another 3 hours, Units 4, 5, and 1 are running, Units 2, and 3 are on standby, and so on...

o Rotation according to working hours

In this mode, unit rotation is similar to automatic rotation mode. The difference is that the sequence of turning on the unit will be calculated according to unit working hours (main fan working hours). During every unit rotation, the unit with shorter working hours will be turned on. Only when working hours of the duty unit exceeds the one of backup unit, and the rotation period is up, rotation process will take place.

• Time zone rotation

When this mode is selected, additional time zone rotation parameters need to be set under unit configuration of factory menu:

Figure 6.9.8

In this mode, the network will perform rotation at a fixed time (configurable) of a certain day, and the sequencing is the same as in the automatic rotation mode.

As shown in figure above: it is set to perform a rotation every Tuesday at 12:12.

Note: Besides the above fixed hours or fixed days configuration that will trigger rotation, the following situations will trigger rotation too:

- 1) Unit in operation failed and shut down;
- Slave unit in operation is powered off or disconnected;
- 3) Duty unit in shut down by terminal;
- Once the above conditions are removed, the unit will resume its previous operating conditions.
- When master unit is powered off or disconnected, backup units from slave will be turned on until the master unit reconnects to the network.
- 6) When unit rotation is enabled for the first time and master and slave addresses are set, the controller needs to be restarted.

6.10 Probe configuration

To make full use the versatility and scalability of this program, all input and output points can be configured to suit different user configurations. When unit is off, access to unit configuration screen under factory menu:

1. Return air humidity probe configuration

As shown in Figure 6.10.1, users can select the relevant probe type according to configuration of the unit.

2. Supply air humidity probe configuration

As shown in Figure 6.10.2, if user has configured supply air humidity probe, it needs to be enabled in the unit configuration screen under factory menu.

3. Water inlet and outlet temperature probe configuration

Figure 6.10.3

As shown in Figure 6.10.3, if user has configured the water inlet/outlet temperature probe, it needs to be enabled in the unit configuration screen under factory menu.

6.11 Restore default parameter values

There are three ways to install CITEC default values on $\mu\text{PC3}\text{:}$

1. Access the initialization menu and insert default values:

0	MInitialization HE02	1
<i>N</i> .	DEFAULT INSTALLATION	
Prg	Enable load default	4
Esc	varue. No	Ŧ
	Figure 6.11.1	

- Upload this program to the controller for the first time;
- 3. Update the version of this program.

7. ALARM

7.1 View and reset active alarm

7.1.1 ALARM key and LED indicator

Regardless of the screen displayed, pressing the *Alarm* key will display the active alarms. There are three different situations: no alarm is activated, or at least one alarm is activated, or at least one alarm has been activated and the alarm has been automatically reset.

1- If no alarm is activated, the following screen will be displayed:

Press *Esc* key to return to previous screen. Press *Enter* key to view the alarm log.

- 2- If at least one alarm is activated, pressing the *Alarm* key will first mute the buzzer and then display the latest activated alarm screen. Press the *Up* or *Down* key to scroll through other alarms; holding *Alarm* key for more than 3 seconds will attempt to clear the alarm and return to main screen. If the alarm is not successfully cleared, the alarms loop continues.
- 3- At least one alarm has been activated and the alarm has been automatically reset. At this time, pressing the *Alarm* key will automatically display the alarm log screen to facilitate users to check history alarms.
 - The red LED indicator of the *Alarm* key can be: - Off: No activated alarm;
 - Flashing: At least one alarm is activated, or at least one alarm that has not been checked and has been reset automatically.

7.1.2 Reset alarm

The alarms can be reset manually, automatically or semi-automatically:

- Manual reset: If the alarm condition no longer exists, press and hold the *Alarm* key for 3 seconds to clear the alarm.
- Automatic reset: When the alarm condition ends, the buzzer is automatically muted and the alarm is reset.
- Semi-automatic reset: The number of alarm activations per hour is calculated. If that number is less than the set maximum, the alarm is on automatic reset, once the limit is exceeded it becomes manual reset.

7.2 Alarm log

From the main screen, entering the Alarm Log menu allows access to the alarm log screen.

Information displayed on the screen: alarm events (indicating how "old" the alarm is: AL*01 is the oldest alarm); the time and date when the alarm occurred; a brief description of the recorded alarm.

The alarm log can be cleared via initialization menu, the screen is as below:

Ą.	Alnitialization Alarm initializat	ion	↑
Prg	Clear AutoReset	NO NO	t
Esc	Buzzer enable:		¥
	Figure 7.2.2		

Note:

- A maximum of 64 alarms can be recorded. If more than 64 alarms, the most recent alarm will overwrite the oldest one;
- 2) Refer to Appendix 1 for list of alarms.

8. MASTER SUPERVISORY

This program can be connected with various types of supervisory systems using Modbus protocol. Supervisory by master unit can be enabled via unit configuration menu as shown in Figure 8.1.

4	SUnit Conf.	F009	↑
Prg	Enable unit UnUff by digit input: Enable unit OnOff		4
Esc	Enable auto restar	∿ย่	Ŧ

Figure 8.1

Parameters such as communication protocol, address etc. can be configured under (E. Other Settings – Communication Management). Users can establish communication with BMS master via BMS2 port or Ethernet port for each unit individually.

As shown in Figure 8.2, BMS2 port is used to establish communication with BMS master through Modbus protocol for each unit individually;

Figure 8.2

As shown in Figure 8.3, users can use Ethernet port to establish communication with the BMS master through Modbus TCP protocol for each unit individually;

Figure 8.3

8.1 Modbus protocol address list

Following table shows a list of Modbus protocol parameters and addresses. For μ PC3 controller with Ethernet port, communication address of BMS master is U1. In this case, each unit will individually send communication addresses to BMS master.

U1 protocol address list

Address	Description	Types	Access
2	Unit On/Off by BMS	Coil	ReadWrite
3	Alarm reset by BMS	Coil	ReadWrite
Address	Description	Types	Access
1	Return air temperature	HoldingRegister	Read
2	Return air humidity	HoldingRegister	Read
3	Supply air temperature	HoldingRegister	Read
4	Supply air humidity	HoldingRegister	Read
5	Water inlet temperature	HoldingRegister	Read
6	Water outlet temperature	HoldingRegister	Read
7	Water valve signal - Value	HoldingRegister	Read
8	Supply fan - Value	HoldingRegister	Read
9	Humidifier - Value	HoldingRegister	Read
10	D_input Status / 0=closed / 1= Open (Refer to Note 1)	HoldingRegister	Read
11	D-output status /0= Inactived /1=Actived (Refer to Note 1)	HoldingRegister	Read
12	Return air setpoint	HoldingRegister	ReadWrite
13	Supply air setpoint	HoldingRegister	ReadWrite
14	Humidification setpoint	HoldingRegister	ReadWrite
15	Dehumidification setpoint	HoldingRegister	ReadWrite
16	Supurvisor.Alarm_Word1 (Refer to Note 1)	HoldingRegister	Read
17	Supurvisor.Alarm_Word2 (Refer to Note 1)	HoldingRegister	Read
18	Supurvisor.Alarm_Word3 (Refer to Note 1)	HoldingRegister	Read
19	Supurvisor.Alarm_Word4 (Refer to Note 1)	HoldingRegister	Read
20	Working_Status (Refer to Note 1)	HoldingRegister	Read

SNMP V2C Protocol

 System Informations

 Enterprise OID
 1.3.6.1.4.1.
 9839

 Base Variables OID
 1.2

 Base Traps - Informs OID
 1000

 Agent Informations
 1000

 Read Only Community
 Value public

 Read/Write Community
 Value citec

 Manager Offline Timeout
 3000

SNMP OID defined in the CITEC μ PC3 CW 3.61 program:

Operation mode of TRAP Receiver IP address for pGDx 7 has been modified under CITECµPC3 CW 3.61 program.

Note 1: Refer to table below and read according to bits.

Unit status (digital input)	Description
Integer 0	Air flow switch
Integer 1	Air pressure filter
Integer 2	Heater 1 overload
Integer 3	Heater 2 overload
Integer 4	Power failure
Integer 5	Smoke/fire alarm
Integer 6	Water flooding switch
Integer 7	Humidifier alarm
Integer 8	Fan overload
Integer 9	Remote on/off
Integer 10	Power failure + Fan overload
Integer 11	Flood detector + Smoke/fire alarm

Alarm code 1 to 4

Alarm code 1	Description		
Integer 0	Air flow alarm		
Integer 1	Air filter clogged		
Integer 2	Unit - Overload heater2 alarm		
Integer 3	Unit - Overload heater1 alarm		
Integer 4	Unit -Power failure alarm		
Integer 5	Smoke/fire alarm		
Integer 6	Water leakage		
Integer 7	Unit -Humidifier alarm		
Integer 8	Unit -Fan overload alarm		
Integer 9	Unit - Return temperature probe alarm		
Integer 10	Unit - Return humidity probe alarm		
Integer 11	Unit - Supply temperature probe alarm		
Integer 12	Unit - Supply humidity probe alarm		
Integer 13	Unit - Water inlet temperature probe alarm		
Integer 14	Unit - Water Outlet temperature probe alarm		
Integer 15	High return air temperature		
Alarm code 2	Description		
Integer 0	Low return air temperature		
Integer 1	High supply air temperature		
Integer 2	Low supply air temperature		
Integer 3	Hours counter alarm for heater 1		
Integer 4	Hours counter alarm for heater 2		
Integer 5	Hours counter alarm for supply fan		
Integer 6	Hours counter alarm for unit		
Integer 7	Hours counter alarm for water valve		
Integer 8	Retain variable to much overwritten alarm		
Integer 9	Retain memory write error		
Integer 10	Unit -Fan overload or Power failure alarm		
Integer 11	Unit -Water leakage or Smoke/fire alarm		

Unit status (digital output)	Description
Integer 0	Supply fan
Integer 1	Heater step 1
Integer 2	Heater step 2
Integer 3	Humidify
Integer 4	Global alarm
Integer 5	Dehumidification valve

Unit operating status	Description
Integer 0	Cooling
Integer 1	Heating
Integer 2	Humidification
Integer 3	Dehumidification

Alarm code 3	Description	
Integer 0	CPY offline	
Integer 1	Mn alarm	
Integer 2	EC alarm	
Integer 3	E1 alarm	
Integer 4	E0 alarm	
Integer 5	EH alarm	
Integer 6	Ep alarm	
Integer 7	EU alarm	
Integer 8	E3 alarm	
Integer 9	EF alarm	
Integer 10	Ed alarm	
Integer 11	Eh1 alarm	
Integer 12	Eh2 alarm	
Integer 13	SU alarm	
Integer 14	CY warn	
Integer 15	EA warn	
Alarm code 4	Description	
Integer 0	CP warn	
Integer 1	CL warn	
Integer 2	E2 warn	
Integer 3	High return air humidity	
Integer 4	Low return air humidity	
Integer 5	High supply air humidity	
Integer 6	Low supply air humidity	
Integer 7	Master offline	
Integer 8	Slave offline	
Integer 9	YDT protocol master offline	

APPENDIX 1: ALARM LIST

The following list provides related information about the alarms in this program, including alarm code, description, action plan, reset method, and delay:

Alarm code	Description	Action plan	Reset method	Delay
AL01	Retain variable to much overwritten alarm	Off all units	User reset	No delay
AL02	Retain memory write error	Information only	User reset	No delay
AL03	Smoke/fire alarm	Off all units	User reset	No delay
AL04	Water leakage	Off all units	User reset	No delay
AL05	Air flow alarm	Start delay, run delay, alarm triggered then off all units	User reset	Start delay 30s, Run delay 3s (configurable)
AL06	Air filter clogged	Information only	Auto reset	Run delay 30s, Run delay 3s (configurable)
AL07	High return air temperature	Information only	Auto reset	Delay 600s
AL08	Low return air temperature	Information only	Auto reset	Delay 600s
AL09	CPY offline	Off humidifier	Auto reset	No delay
AL10	Mn alarm	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL11	EC alarm	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL12	E1 alarm	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL13	E0 alarm	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL14	EH alarm	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL15	Ep alarm	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL16	EU alarm	Information only	Refer to CPY manual	Refer to CPY manual
AL17	E3 alarm	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL18	EF alarm	Stop humidification for 10min	Refer to CPY manual	Refer to CPY manual
AL19	Ed alarm	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL20	Eh1 alarm	Information only	Refer to CPY manual	Refer to CPY manual
AL21	Eh2 alarm	Information only	Refer to CPY manual	Refer to CPY manual
AL22	SU alarm	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL23	CY warn	Information only	Refer to CPY manual	Refer to CPY manual
AL24	EA warn	Information only	Refer to CPY manual	Refer to CPY manual
AL25	CP warn	Information only	Refer to CPY manual	Refer to CPY manual
AL26	CL warn	Information only	Refer to CPY manual	Refer to CPY manual
AL27	E2 warn	Stop humidification	Refer to CPY manual	Refer to CPY manual
AL28	Low supply air temperature	Information only	Auto reset	Delay 600s
AL29	High supply air temperature	Information only	Auto reset	Delay 600s
AL30	Hours counter alarm for heater 1	Information only	Auto reset	No delay
AL31	Hours counter alarm for heater 2	Information only	Auto reset	No delay
AL32	Hours counter alarm for unit	Information only	Auto reset	No delay
AL33	Hours counter alarm for water valve	Information only	Auto reset	No delay
AL34	Unit - Return temperature probe alarm	Off the unit if temperature control is based on either supply air + return air or return air only	Auto reset	Delay 10s
AL35	Unit - Return humidity probe alarm	Off humidifier and dehumidifier	Auto reset	Delay 10s
AL36	Unit - Supply temperature probe alarm	Off the unit if temperature control is based on either supply air + return air or supply air only	Auto reset	Delay 10s

AL37	Unit - Supply humidity probe alarm	Information only	Auto reset	Delay 10s
AL38	Unit - Water inlet temperature probe alarm	Information only	Auto reset	Delay 10s
AL39	Unit - Water Outlet temperature probe alarm	Information only	Auto reset	Delay 10s
AL40	Unit - Overload heater2 alarm	Off electric heater 2	User reset	No delay
AL41	Unit - Overload heater1 alarm	Off electric heater 1	User reset	No delay
AL42	Unit -Power failure alarm	Off unit	User reset	No delay
AL43	Unit -Fan overload alarm	Off unit	User reset	No delay
AL44	Unit -Humidifier alarm	Close humidifier cylinder	Auto reset	No delay
AL45	Hours counter alarm for supply fan	Information only	Auto reset	No delay
AL46	Unit -Fan overload or Power failure alarm	Off unit	User reset	No delay
AL47	Unit -Water leakage or Smoke/fire alarm	Off unit	User reset	No delay
AL48	High return air humidity	Information only	Auto reset	Delay 600s
AL49	Low return air humidity	Information only	Auto reset	Delay 600s
AL50	High supply air humidity	Information only	Auto reset	Delay 600s
AL51	Low supply air humidity	Information only	Auto reset	Delay 600s
AL52	Master offline	Information only	Auto reset	Delay 30s
AL53	Slave offline	Information only	Auto reset	Delay 30s
AL54	YDT protocol master offline	Information only	Auto reset	Delay 500ms

APPENDIX 2: PROGRAM DOWNLOAD

Program download for controller

1. Connect controller to a PC using Micro USB data cable to read controller's storage disk. Double-click to access storage disk and three folders will be shown as Figure 9.1.1 below; (Note: controller in powered on state)

 File folder (3) HTTP File folder 	TEMP File folder	UPGRADE File folder	
 Text Document (1) 		* 22	
Error.log Text Document 112 bytes			

2. Double-click UPGRADE folder and place .ap1 file compiled by OS and program into this folder, as shown in Figure 9.1.2 below;

Figure 9.1.1

b+o_uPC3_4.1.006.ap1	2017/6/8 20:07	AP1 File	804 KB
bin_CNSTDmCRAR_1.0.0B_2017_07_21.ap1	2017/7/21 15:23	AP1 File	1,189 KB

Figure 9.1.2

3. Disconnect the controller and the PC, then access to system menu through pGD1 terminal. Long press *Alarm* + *Enter* keys to enter the screen as shown in Figure 9.1.3. Select UPGRADE and press *Enter* key to choose the program to be updated;

4. After selecting the program that needs to be updated, press *Enter* key to confirm. Upon successful update, the terminal will prompt messages as shown in Figure 9.1.4 below. Pressing *Enter* key again will restart the controller.

: Procedures to update OS are the same as procedures to update program. Follow the same steps and select OS file that needs to be updated.

Program download for pGDx

 Save compressed file into the root directory of a USB flash drive, then insert the USB flash drive into the USB port of pGDx. Long press anywhere on the pGDx and a drop-down menu list will appear (as shown on the left figure below). Click "Update" and it will prompt a dialog box (as shown on the right figure below).

Figure 9.2.1

2. Select "Auto select best match" and then click "Next" for automatic installation. Once completed, pGDx will restart.

MALAYSIA OFFICE CITEC International Sdn. Bhd.

No.1C (3rd Floor), Jalan Anggerik Vanilla X31/X, Kota Kemuning, Seksyen 31, 40460 Shah Alam, Selangor, Malaysia.

T: +603 5124 5668 F: +603 5124 5669 E: enquiry@citecinternational.com

CHINA OFFICE Guangzhou CITEC Engineering Co. Ltd.

Room 807, Time Square East, No. 30, Tianhe North Road, Tianhe District, Guangzhou, China.

T: +8620 3886 5819 / 5971 F: +8620 3886 9400 E: daichunhua@citecinternational-china.com

SINGAPORE OFFICE CITEC International (SEA) Pte. Ltd.

16 New Industrial Road #04-05 Hudson Techno Centre Singapore 536204.

T: +65 - 6281 7748 F: +65 - 6281 4412 E: william@citecinternational.com.sg

HONG KONG OFFICE CITEC International Ltd.

Flat B, 13/F, Hung Fuk Factory Building, 60 Hung To Road, Kwun Tong, Kowloon, Hong Kong

T: +852 - 2827 0688 F: +852 - 2598 6203 E: enquiry@citecinternational.com

THAILAND OFFICE

CITEC International Group (Thailand) Co., Ltd. 89, Cosmo Office Park Building, 7th Floor, Popular 3 Road, Ban Mai, Pak Kret, Nonthaburi 11120, Thailand.

T: +66 - 2019 0548 F: +66 - 2019 0548 E: sales@citecinternational.co.th

www.citecinternational.com